Searching for potential signals in the noise for ADMX G2-Run1C APS April Meeting 2021

Chelsea Bartram 04/18/2021

Matter, matter everywhere, but not enough, we think...

Perhaps it is wave-like dark matter, specifically the QCD axion.

How do we find it then?

warm electronics (DAQ rack) this way

Analysis requires understanding 2 components...

Expected Axion Signal Power:

 $P = (8.05 \times 10^{-23}) \left(\frac{V}{136\,\ell}\right) \left(\frac{B}{7.6\,\mathrm{T}}\right)^2 \left(\frac{C_{010}}{0.4}\right) \left(\frac{Q}{80,000}\right) \left(\frac{g_{\gamma}}{0.97}\right)^2 \left(\frac{\rho_a}{0.45\,\mathrm{GeV/cc}}\right) \left(\frac{f_a}{1020\,\mathrm{MHz}}\right)$

V: cavity volume B: static magnetic field C₀₁₀: form factor Q: quality factor

Expected Noise Power:

 $T_{\rm sys} = T_{\rm phys} + T_{\rm amp}$

 g_{γ} : axion photon coupling ρ_a: dark matter density f_a: Axion frequency

 $P_n = k_B T_{\rm sys} b$

System noise is a result of amplifier noise and physical temperature

Medium Resolution Analysis

- 10,000 of the 10ms subspectra were coadded together at the level of the digitizer code
- Results in 100 seconds worth of data (integration time)
- Raw spectra undergo processing before axion signals can be identified

Filtering

- Spectrum after warm electronics background and cold electronics shape is removed
- Gray band shows 1σ error bar.

Lorentzian cavity shape

- A real axion signal would follow this Lorentzian shape
- Can be used to identify radio frequency interference (RFI) vs axion. Noise entering downstream of the cavity will not follow the Lorentzian shape of the cavity.

Axion velocity distribution ("line shape")

Detectable with High Resolution Search (10 mHz)

Individual spectra are combined

Co-adding procedure:

Divide power by the system noise

$$P_{i,lor}^{j} = (P_{i}^{j}/T_{sys}) * \text{Lorentzian}$$

• Divide by Q, V, C_{010}, B^2 to obtain the unit axion power

$$P_{i_{\text{scaled}}}^{j} = P_{i,\text{lor}}^{j} \left(\frac{1}{C_{010}}\right) \left(\frac{1 \text{ m}^{3}}{V}\right) \left(\frac{1}{Q}\right) \left(\frac{1}{Q}\right)$$

i is the bin index, *j* is the scan index

Compute grand spectrum power

Grand Power Spectrum (Simulated Data)

- Combination of the individual processed raw spectra
- Axion candidates are identified at this stage

SIMULATED DATA!

Software injections

SIMULATED DATA!

- Used to determine our detection efficiency and verify our analysis
- \bullet removal.

SOFTWARE INJECTIONS

Generated at the start of the analysis and include axion line shape

Developed new techniques to mitigate sensitivity reduction due to baseline

ADMX Rescans

When do you decide to rescan?

3 conditions:

- Not enough data (low SNR): min SNR of 3
- 3.4σ excess
- Excess at DFSZ threshold or above

 $P_{\rm measured} + 0.85\sigma > P_{\rm DFSZ}$

There will always be some of these remaining just due to statistics!

Persistence Checks

- Synthetic axion signals should go away when turned off
- RFI that comes and goes is clearly not an axion
- Virialized axion signal would persist in every scan
- Time between scans typically 2 weeks or less. Important details for high-res search.

 \sim Scan

4

can

Ň

Persistence Checks

Secondary SAG

- A real axion or a secondary SAG would persist in all scans, requiring the operators to advance to the next step in the data-taking decision tree.
- Move to the TM011 mode....

Synthetic Signal

Clearly a synthetic because it appeared to be even stronger on the TM011 mode

Clear Maxwell-Boltzmann line shape generated by SAG.

ADMX Exclusion Limit

Bartram, Chelsea, et al. "Axion dark matter experiment: Run 1B analysis details." *Physical Review D* 103.3 (2021): 032002.

Conclusion

- Run 1C data-taking progressing from 800 MHz— 1020 MHz
- First pass at somewhat lower sensitivity (roughly 2x DFSZ) due to COVID limitations (assuming 100% axion dark matter density)
- Will resume at DFSZ sensitivity after post-Covid improvements
- Improvements already made to SAG, analysis, etc

This work was supported by the U.S. Department of Energy through Grants No DE-SC0009800, No. DE-SC0009723, No. DE-SC0010296, No. DE-SC0010280, No. DE-SC0011665, No. DEFG02-97ER41029, No. DE-FG02-96ER40956, No. DEAC52-07NA27344, No. DE-C03-76SF00098 and No. DE-SC0017987. Fermilab is a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. Additional support was provided by the Heising-Simons Foundation and by the Lawrence Livermore National Laboratory and Pacific Northwest National Laboratory LDRD offices.

This work was supported by the U.S. Department of Energy through Grants No DE-SC0009800, No. DE-SC0009723, No. DE-SC0010296, No. DE-SC0010280, No. DE-SC0011665, No. DEFG02-97ER41029, No. DE-FG02-96ER40956, No. DEAC52-07NA27344, No. DE-C03-76SF00098 and No. DE-SC0017987. Fermilab is a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. Additional support was provided by the Heising-Simons Foundation and by the Lawrence Livermore National Laboratory and Pacific Northwest National Laboratory LDRD offices.

Axion Search Decision Tree

Axion Search Decision Tree

