Venturing a glimpse of the dark matter halo with ADMX

Cambridge Workshop on Axion Physics Chelsea Bartram July 27 2021

Axion Dark Matter eXperiment

- Resonant cavity in a magnetic field ('haloscope' as first proposed by Pierre Sikivie)
- Relying on inverse Primakoff effect
- High-Q —> Higher probability of axion to photon conversion
- Have reached DFSZ benchmark sensitivity with the ADMX detector

Funding Agencies

Los Alamos

Pacific

Northwest

ABORATORY

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Guided by the QCD Axion

- 1-100 µeV mass range can constitute all the dark matter.
- Can also solve the strong CP problem.

Helen Quinn

Roberto Peccei 1942-2020

ADMX

- Dil Fridge: Reaches ~100 mK
- Superconducting magnet: ~can reach up to 8 T
- Quantum electronics: Josephson Parametric Amplifier (JPA)
- Field cancellation coil
- Microwave cavity and electronics

Two main analyses

()

5

Medium-res

- 100 Hz bin width
- Saved as power spectra
- Isothermal halo model
- Bin width optimized for expected axion lineshape
- Integrated into rescan procedure

High-res

- 10 mHz native bin width
- Saved as time-series
- Non-virialized axions
- Sensitive to frequency modulation from orbital and rotational motion
- Not (yet) integrated into rescan procedure

- Medium-res
 - Must be persistent in every spectrum
 - Must follow cavity line-shape (enhance on resonance)
 - Not a hardware synthetic

Must not exist in the lab or warm receiver chain as ambient RFI Must be suppressed in TM011 mode

Must scale accordingly with the magnetic field

Synthetic Candidates Type 1:

Injections that we use to verify the integrity of the receiver chain and sensitivity

- Turned off in final sweep through frequency range; verified as synthetics.
- 10-12 per 10 MHz.

Type 2:

Injection used to practice full axion detection procedure

•Stay on until the ADMX operators determine that they are not real signals.

• 1-2 per run.

7/27/21

Candidate Decision Tree

Turn off secondary synthetic axion injections

Check for signal scaling with B²

Continue to next nibble

Axion found! Study line shape, etc.

ALERT!

Synthetic Axion Generator Upgrades made to Synthetic Axion Generator (SAG) for Run 1C

Synthetic Axion Generator

- Extra stage of mixing/filtering to improve signal purity
- New enclosure separate from the main DAQ
- New 0-90 dB programmable attenuator for increased automation. Fully automated and integrated with dripline/lua.
- Axion line shape is simulated but not perfect. Will be improved in future runs.

Rack Installation for Run 1C

candidate: 896.448 MHz $\times 10^{-21}$

- Sensitive to KSVZ: 800-970 MHz
- Sensitive to DFSZ
 970-1020 MHz
- Covered 2x prior frequency range

For analysis details

- Prior paper: Bartram, Chelsea, et al.
 "Axion dark matter experiment: Run 1B analysis details." *Physical Review* D 103.3 (2021): 032002.
- Results for Run 1C
 Forthcoming

Scan speed limitations

$$\frac{g_{\gamma}}{0.36}\Big)^4 \left(\frac{f}{740\,\mathrm{MHz}}\right)^2 \left(\frac{\rho}{0.45\,\mathrm{GeV/cm^3}}\right)^2 \left(\frac{0.2\,\mathrm{K}}{\mathrm{T_{sys}}}\right)^2 \left(\frac{3.5}{\mathrm{SNF}}\right)^2 \left(\frac{1}{\mathrm{SNF}}\right)^2 \left(\frac$$

Defined by nature

Dark Matter Density

Minimize

- System noise:
 - Amplifier Noise

Physical Noise

Scanning improvements

increase

replace JPA, improve system noise understanding

To do: Improve magnetic shielding, bring cavity temperature down,

Sidecar Cavity

Proof-of-concept for possible features of the future data-taking operations.

- Sidecar is a small prototyping cavity that sits on top of the main cavity.
- This iteration of sidecar is testing:
 - Traveling wave parametric amplifier
 - Clamshell cavity design
 - Piezo motors for antenna and tuning rod

Bird's-eye view of sidecar mounted to the main cavity.

Traveling Wave Parametric Amplifier

Compact, requires fewer circulators

compact axion structures: Signatures from the QCD axion to fuzzy dark matter." Physical Review D 101.8 (2020): 083014.

4-cavity array (1-2 GHz)

4-cavity array planned for University of Washington

- 1.4-2.2 GHz
- Amplitude-combine cavities in phase for improved SNR.
- Scan rate ~ (N)²: N cavities in phase allows factor of N increase in scan rate relative to power combining after the fact
- Setup has common rotor with coarse tuning rods.
- Fine-tuning done by perturbing fields with sapphire mounted to linear stage.

7/27/21

ADMX Extended Frequency Range (EFR)

Tuning rod is mounted to arms outside of array

Tuning rod swung into position

system

2-4 GHz prototype cavity assembly at University of Florida Cylindrical cavity formed from two clamshell halves

Array with fully assembled tuning

Possibly ~18 cavities Simulations underway

9.4 T MRI Magnet at UIUC

- Scan rate goes as $B^4 = High$ field critical for future axion searches.
- Scan rate goes as $V^2 = Large$ volume critical for future axion searches.
- ADMX Collaboration plans to use large-bore 9.4 T magnet currently at UIUC.
- Room for R&D work in this magnet as well!

ADMX Extended Frequency Range (EFR)

New Features

- Horizontal magnet bore
- Extra modularity: cavity electronics are separate from magnet bore
- Large magnet volume: 258 liters
- Preferred site for **ADMX-EFR: PW8 Hall** at Fermilab
- Other: Squeezing? Superconducting cavities?

(ADMX EFR Design)

ADMX Extended Frequency Range (EFR)

New ideas being explored with collaborators

- Andrew Sonnenschein: Broadband 'Lighthouse' Detector (BREAD collaboration)
 - Coaxial dish antenna concept to focus light
 - Requires single photon counting capabilities
 - Broadband capabilities
- Ed Daw: Resonant Feedback Concept
 - Resonant feedback using FPGA filters
 - Possibility of generating multiple resonances
 - Broadband capabilities
- Akash Dixit: Single photon counting with qubits
 - Need to develop techniques to transport the photon
 - Investigate magnetic field performance
 - Possibility of starting cavity in high N Fock state

Akash Dixit

Acknowledgements

This work was supported by the U.S. Department of Energy through Grants No DE-SC0009800, No. DE-SC0009723, No. DE-SC0010296, No. DE-SC0010280, No. DE-SC0011665, No. DEFG02-97ER41029, No. DE-FG02-96ER40956, No. DEAC52-07NA27344, No. DE-C03-76SF00098 and No. DE-SC0017987. Fermilab is a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. Additional support was provided by the Heising-Simons Foundation and by the Lawrence Livermore National Laboratory and Pacific Northwest National Laboratory LDRD offices.

Conclusions

- ADMX has completed the first half of Run 1C datataking.
- Will resume second half at DFSZ sensitivity after repairs.
- Progress is being made towards higher frequency searches.
- Discovery could happen at any moment.

Thank you!

Any Questions?

