

To see 85% of the World in a Grain of Sand: Search for wave-like dark matter in the ADMX Run1C dataset

Joint Workshop Session for the Australian Research Council Centre of Excellence for Engineered Quantum Systems and Dark Matter Particle Physics

Sense of scale

DM Scattering Mass

What is the dark matter?

'Invisible' matter that would be able to explain:

- Anisotropies in the cosmic microwave background
- Rotation curves of galaxies
- Behavior of galaxy cluster collisions
- Matter Radiation Fluctuations
- Primordial nucleosynthesis
- Gravitational lensing
- Baryon Acoustic Oscillations

Characteristics of the dark matter:

- Cold (non-relativistic)
- Feebly-interacting
- Non-baryonic
- Gravitationally-interacting
- Very stable

What is the dark matter?

'Invisible' matter that would be able to explain:

- Anisotropies in the cosmic microwave background
- Rotation curves of galaxies
- Behavior of galaxy cluster collisions
- Matter Radiation Fluctuations
- Primordial nucleosynthesis
- Gravitational lensing
- Baryon Acoustic Oscillations

Characteristics of the dark matter:

- Cold (non-relativistic)
- Feebly-interacting
- Non-baryonic
- Gravitationally-interacting
- Very stable

Axions as the dark matter

1-100 µeV mass range to constitute entirety of dark matter

- Two classes of models:
 - KSVZ (Kim-Shifman-Vainshtein-Zakharov):
 - couples to leptons
 - Range of g_v values, typically g_v =-0.97 used
 - DFSZ (Dine-Fischler-Srednicki-Zhitnitsky):
 - couples to quarks and leptons
 - Range of g_{γ} values, typically g_{γ} =0.36 used

strong CP problem

Standard Model predicts CP-violation in strong interactionsbut none seen so far!

EDM would violate T (CP) symmetry

Peccei-Quinn Mechanism

- Peccei-Quinn devised solution that upgraded theta to dynamical variable
- Tips the wine-bottle potential so that lowest energy configuration precludes existence of neutron EDM
- 'PQ' mechanism -> pseudo scalar boson (axion)

Steven Weinberg (1933-2021)

Frank Wilçek

Wave-like Dark Matter Mass Range

Lower bound set by size of dark matter halo size of dwarf galaxies

Pre-inflation PQ phase transition

PDG <u>https://arxiv.org/pdf/1710.05413.pdf</u>

Adaptation of L. Winslow DPF Slide

Upper bound set by SN1987A and white dwarf cooling time

Post-inflation PQ phase transition

The Axion Haloscope

Axion Dark Matter eXperiment

- Resonant cavity in a magnetic field ('haloscope')
- Relying on inverse Primakoff effect
- High-Q —> Higher probability of axion to photon conversion
- Have reached DFSZ benchmark sensitivity with the ADMX detector

nversion ADMX

FOUNDATION

ADMX

- Dil Fridge: Reaches
 ~100 mK
- Superconducting magnet:
 ~can reach up to 8 T
- Quantum electronics: Josephson Parametric Amplifier (JPA)
- Field cancellation coil
- Microwave cavity and electronics

In cleanroom

In magnet bore

11

Data-taking operations 2019-2021

High-res Medium-res 10 mHz native bin width • 100 Hz bin width Saved as power spectra • Saved as time-series Non-virialized axions Isothermal halo model Bin width optimized for expected Sensitive to frequency modulation from orbital and rotational motion axion lineshape

Data-taking operations 2019-2021

Medium-res

Driving the data-taking operations!

- 100 Hz bin width
- Saved as power spectra
- Isothermal halo model
- Bin width optimized for expected axion lineshape

High-res

- 10 mHz native bin width
- Saved as time-series
- Non-virialized axions
- Sensitive to frequency modulation from orbital and rotational motion

13

Axion Doppler Shift

Probability

Josephson Parametric Amplifier (JPA)

- Critical to obtaining low amplifier noise
- How does a parametric amplifier work?
- Classic example is child on a swing
- Anharmonicty leads to energy transfer from the pump tone to the signal tone
- Requires some non-linear element, in this case, the Josephson Junction

Figures courtesy of Shahid Jawas

15

0 K	
к К	ADMX RF Schematic
	3 important RF paths to highlight
) mK	
) mK	
_	

11/29/21

300 K	
4 K	Tra
1 K	Tra •Re •Qu
250 mK	Sar syn
100 mK	

Insmission Measurement RF Path

- nsmission Measurement Gives: esonant frequency
- uality factor

me path is used to inject nthetic axion signals

0 K K	Reflection Measurement RF Path
K	Reflection Measurement gives: Antenna Coupling
mK	
mK	

11/29/21

00 K
ŧκ
IК

250 mK

100 mK

Ch 1 Signal Path

Weak port line is terminated. Signal read out directly from the cavity.

This is our configuration for data acquisition (digitization).

Tuning our cavity

As we tune, we track the TM010 mode Axion couples most strongly to this mode Note occasional mode-crossings

Frequency in MHz

Zooming in on a single mode

Synthetic Axion Generator

Type 1:

Injections that we use to verify the integrity of the receiver chain and sensitivity

- Turned off in final sweep through frequency range; verified as synthetics.
- 10-12 per 10 MHz.

Type 2:

Injection used to practice full axion detection procedure

•Stay on until the ADMX operators determine that they are not real signals.

• 1-2 per run.

Watt

SNR

Upgrades made to Synthetic **Axion Generator** (SAG) for Run 1C

candidate: 896.448 MHz $\times 10^{-21}$

8.96488.96408.96428.9644 8.9646 frequency [Hz]

ADMX Run 1C limit

Bartram, C., et al. "Search for 'Invisible' Axion Dark Matter in the 3.3– 4.2 µeV Mass Range." *arXiv preprint arXiv:2110.06096* (2021).

Resonant Haloscope Scan Rate

$$\frac{df}{dt} \approx 543 \frac{\mathrm{MHz}}{\mathrm{yr}} \left(\frac{B}{7.6 \mathrm{\,T}}\right)^4 \left(\frac{V}{136 \,\ell}\right)^2 \left(\frac{Q_l}{30000}\right) \left(\frac{C}{0.4}\right) \left(\frac{g_{\gamma}}{0.36}\right)^4 \left(\frac{f}{740 \mathrm{\,MHz}}\right)^2 \left(\frac{\rho}{0.45 \mathrm{\,GeV/cm^3}}\right)^2 \left(\frac{0.2 \mathrm{\,K}}{\mathrm{T}_{\mathrm{sys}}}\right)^2 \left(\frac{3.5 \mathrm{\,KR}}{\mathrm{SNR}}\right)^2 \left(\frac{1}{100 \mathrm{\,KR}}\right)^2 \left(\frac{1}{$$

Two factors here are inextricably linked...

Small volume

 C_{010} .

Higher frequency (mass) of axion you can detect

Red is cartoon magnetic field Blue is cartoon axion electric field

 B_{ea}^2

Smaller wavelength of TM010 mode

$$\frac{dV\vec{B_{ext}}\cdot\vec{E_a}|^2}{\int dV\epsilon_r |\vec{E_a}|^2} \quad \text{``F}$$

Where do we go from here?

- We need solutions to this problem if we are going to keep up the search!
- ADMX Near-Term Solution: Coherently combine the power from multiple small cavities **3 Planned Multi-Cavity Searches:**
 - Run 2A/B (1.4–2.2 GHz) 2–4 GHz

Where do we go from here?

Near-Term

Multi-Cavity Systems

Longer-Term

Something Completely **Different?**

Future

Frequency (MHz)

Frequency (MHz)

Sidecar Experiment

- Sidecar is a small prototyping cavity that sits on top of the main cavity.
- This iteration of sidecar is testing:
 - Traveling Wave Parametric Amplifier (TWPA)
 - Clamshell cavity design
 - Piezo motors for antenna and tuning rod

Traveling Wave Parametric Amplifier

- Benefits of TWPA include
 - Broadband gain spans several GHz.
 - Eliminates need for an additional circulator (Less loss, more space)
 - Reasonable noise performance
- ADMX Sidecar Demonstration
 - Operated TWPA for several weeks in magnetic field
 - Reasonable performance (achieved ~8 dB SNR)

Sidecar Exclusion Plot

Bartram, C., et al. "Dark Matter Axion Search Using a Josephson Traveling Wave Parametric Amplifier." *arXiv preprint arXiv:2110.10262* (2021).

Frequency (MHz)

Frequency (MHz)

Near-term ADMX strategy

18-Cavity array

4-Cavity array

2025--

Multi-cavity arrays

4-cavity array planned for University of Washington

- 1.4-2.2 GHz
- Amplitude-combine cavities in phase for improved SNR.
- Scan rate ~ (N)²: N cavities in phase allows factor of N increase in scan rate relative to power combining after the fact
- Setup has common rotor with coarse tuning rods.
- Fine-tuning done by perturbing fields with sapphire mounted to linear stage.

Multi-cavity arrays

2A Cavity Array Overview

Full Cavity 2A Assembly

Cavity 2A Assembly Cross Section

Run 2A & 2B Frequency range: 1.4-2 GHz Volume: 76 liters Anticipated Q_{unloaded} ~ 130k

- Component construction essentially complete (U. of Florida)
- Copper plating completed (LLNL)
- Initial assembly of empty cavity system at LLNL
- Awaiting relaxation of "shelter-in-place" orders to finish room-temperature testing and operations with tuning rods.
- In parallel work on custom power combiners optimized for frequency range (Wash. U. St Louis)

44

Multi-cavity arrays

4-cavity main cavity assembly at LLNL

LLNL staff scientist Nathan Woollett (top) and UW grad student Tom Braine (bottom)

Awaiting relaxation of "shelter-in-place" to continue assembly and testing (including addition of tuning rods)

System then shipped to Fermilab for cryogenic testing.

ADMX Run 2A/B Frequency Locking

- Prototype Room Measurements down at U. of Florida
- Locking protocol and software implementation by **PNNL**
- Awaiting cryo-testing at FNAL

- Scan rate goes as B⁴ = High field critical for future axion searches.
- Scan rate goes as $V^2 = Large$ volume critical for future axion searches.
- ADMX Collaboration plans to use large-bore 9.4 T magnet currently at UIUC.
- Room for R&D work in this magnet as well!

Tuning rod is mounted to arms outside of array

Tuning rod swung into position

	Baseline Requirement	Target Performance	Current Design
Frequency Range	2-4 GHz	2-4 GHz	2-4 GHz
Number of Resonant Cavities	14	14	18
Volume	80 Liters	80 Liters	258 Liters
Q	30,000	90,000	38,000
B Field	7.6 T	12.0 T	9.4 T
Form Factor	0.4	0.4	0.4
Noise Temperature	350 mK	325 mK	425 mK
Amplifier Squeezing	1	1.4	1
Operations Days	1000	1000	1000
Normalized FOM	1	30.3	20.8
Dark Matter Sensitivity			
for DFSZ Coupling	0.65 GeV/cc	0.12 GeV/cc	0.14 GeV/cc
Dark Matter Sensitivity			
for KSVZ Coupling	0.15 GeV/cc	0.027 GeV/cc	0.033 GeV/cc

New Features

- Horizontal magnet bore
- Extra modularity: cavity electronics are separate from magnet bore
- Large magnet volume: 258 liters
- Preferred site for ADMX-EFR: PW8 Hall at Fermilab
- Other: Squeezing? Superconducting cavities?

(ADMX EFR Design)

Squidadel—> Parapet

Conclusions

- ADMX Run 1C covered 3.3-4.2 µeV assuming 100% dark matter density
 - 2xDFSZ coupling in the range from 950-1020 MHz
 - 1xDFSZ coupling in the range from 800-950 MHz
- Run 1C part 2 currently underway
- ADMX is on track to continue its search for axions. Discovery could happen at any moment!
- Progress being made towards higher frequency searches

Acknowledgements

This work was supported by the U.S. Department of Energy through Grants No DE-SC0009800, No. DE-SC0009723, No. DE-SC0010296, No. DE-SC0010280, No. DE-SC0011665, No. DEFG02-97ER41029, No. DE-FG02-96ER40956, No. DEAC52-07NA27344, No. DE-C03-76SF00098 and No. DE-SC0017987. Fermilab is a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. Additional support was provided by the Heising-Simons Foundation and by the Lawrence Livermore National Laboratory and Pacific Northwest National Laboratory LDRD offices.

