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What Is the dark

‘Invisible’ matter that would be able to explain:

* Anisotropies in the cosmic microwave background
» Rotation curves of galaxies

» Behavior of galaxy cluster collisions

» Matter Radiation Fluctuations

* Primordial nucleosynthesis

» Gravitational lensing

 Baryon Acoustic Oscillations

Characteristics of the dark matter: ESA and the Planck
Collaboration

» Cold (nhon-relativistic
* Feebly-interacting
*Non-baryonic Vera Rubin
» Gravitationally-interacting

*Very stable
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AXIONS as the dark matter

; *1-100 peV mass range to constitute entirety of dark matter

 Two classes of models:

e KSVZ (Kim-Shifman-Vainshtein-Zakharov):
* couples to leptons
* Range of gy values, typically gy=-0.97 used

e DFSZ (Dine-Fischler-Srednicki-Zhitnitsky):
* couples to quarks and leptons
* Range of gy values, typically gy=0.36 used



strong CP problem

Standard Model predicts CP-violation in strong interactions
...but none seen so far!

EDM would violate T (CP) symmetry
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Peccei-Quinn Mechanism

* Peccei-Quinn devised solution that upgraded theta to dynamical
variable

* Tips the wine-bottle potential so that lowest energy configuration
precludes existence of neutron EDM

Frank Wilcek

* ‘PQ’ mechanism —> pseudo scalar boson (axion)

P2
Oscillation about the QCD

Roberto Peccel feie o)
1942-2020 minimum — Daniel Grin

Helen Quinn

Steven Weinberg (1933-2021)



Wave-like Dark Matter Mass Range

Lower bound set b_y size of Upper bound set by
dark matter_halo size of SN1987A and white dwarf
dwarf galaxies cooling time
eV
10-22 10-18 10-14 10-10 10-6 10-2
10-8 10-4 1 104 108 1012
Hz

Pre-inflation
PQ phase transition

Post-inflation

PQ phase transition
PDG https://arxiv.org/pdf/1710.05413.pdf

Adaptation of L. Winslow DPF Slide
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Axion Dark Matter eXperiment

® Resonant cavity in a magnetic field (‘haloscope’)

® Relying on inverse Primakoff effect

e High-Q —> Higher probability of axion to photon conversion
e Have reached DFSZ benchmark sensitivity with the ADMX

detector
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ADMX

* Dil Fridge: Reaches
~100 mK

* Superconducting
magnet:
~canreachupto8 T

« Quantum electronics:
Josephson Parametric
Amplifier (JPA)

* Field cancellation coill

* Microwave cavity and
electronics

Field-Free Region

Quantum Amplifier

In cleanroom

Package

Antennas

Mixing
Chamber

Microwave
Cavity

Tuning Rods

Magnet

In magnet bore

12-50 K

4 K

1K

100-250 mK



Data-taking operations 2019-2021
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Axion Doppler Shift

Probability

Turner, Michael S. "Periodic signatures for the
detection of cosmic axions." Physical Review D 42.10
(1990): 3572.

0.8 -

0.6 -

0.4 -

0.2

0.0 I | l | | |

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Energy (peV)



Josephson Parametric Amplifier (JPA)

e Critical to obtaining low amplifier noise

« How does a parametric amplifier work?

* Classic example is child on a swing

 Anharmonicty leads to energy transfer
from the pump tone to the signal tone

 Requires some non-linear element, in this
case, the Josephson Junction
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ADMX RF Schematic

3 important RF paths to highlight!
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Transmission Measurement RF Path

Transmission Measurement Gives:
*Resonant frequency
Quality factor

Same path is used to inject
synthetic axion signals
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Reflection Measurement RF Path

Reflection Measurement gives:
» Antenna Coupling
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Ch 1 Signal Path

,,,,,,,,,, 1 K Weak port line is terminated. Signal
read out directly from the cavity.
This is our configuration for data
.. acquisition (digitization).
100 mK
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Tuning our cavity

As we tune, we track the TM010 mode
Axion couples most strongly to this mode
Note occasional mode-crossings
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Form factor is the overlap between
the electric field of the mode and the
solenoidal magnetic field
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ADMX Run 1C data-taking?

bias quantum amplifier

digitize

transmission
measurement

possibly inject synthetic
axion signals

reflection
measurement

couple antenna
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ADMX Run 1C data-taking?

\

transmission
measurement

possibly inject synthetic
axion signals

move rods

Bias Current (mA)
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Frequency (MHz)

reflection
measurement

couple antenna

23



ADMX Run 1C data-taking?

bias quantum amplifier

digitize

transmission

measurement

possibly inject synthetic
axion signals

Last Transmission Scan
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ADMX Run 1C data-taking?

bias quantum amplifier

digitize

transmission
measurement

possibly inject synthetic
axion signals

reflection
measurement

Last Reflection Scan
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ADMX Run 1C data-taking?

bias quantum amplifier

digitize

transmission
measurement

possibly inject synthetic
axion signals

reflection
measurement

couple antenna
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% 102} candidate: 896.448 MHz
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Synthetic Axion Generator
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ADMX Run 1C data-taking?

transmission

bias quantum amplifier measurement

possibly inject synthetic
axion signals

reflection
measurement

couple antenna
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ADMX Run 1C data-taking”

bias quantum amplifier

digitize

transmission
measurement

possibly inject synthetic
axion signals

move rods

reflection
measurement

couple antenna
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ADMX Run 1C data-taking”

bias quantum amplifier

digitize

transmission
measurement

possibly inject synthetic
axion signals

reflection
measurement
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Bartram, C., et al. "Search for ‘Invisible’ Axion Dark Matter in the 3.3— Recently accepted by PRL!
4.2 yeV Mass Range." arXiv preprint arXiv:2110.06096 (2021).
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Where do we go from here”

High Frequency | Smaller Volume Slower Scan Rate

We need solutions to this problem if we are going to keep up the search!
ADMX Near-Term Solution: Coherently combine the power from multiple small cavities

3 Planned Multi-Cavity Searches:

Run 2A/B (1.4-2.2 GHZz)
2—-4 GHz

(dark matter)
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Where do we go from here”

Something

Completely
Different?

Smaller q ' M
Cavities Systems

Near-Term Longer-Term Future
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Sidecar Experiment

» Sidecar is a small prototyping
cavity that sits on top of the
main cavity.

 This iteration of sidecar Is
testing:

* [raveling Wave Parametric
Amplifier (TWPA)

» Clamshell cavity design

e Plezo motors for antenna and
tuning rod

37



Traveling Wave Parametric Amplitier

 Benefits of TWPA include

 Broadband gain spans several
GHz.

* Eliminates need for an additional
circulator (Less loss, more space)

 Reasonable noise performance
« ADMX Sidecar Demonstration

e Operated TWPA for several
weeks in magnetic field

 Reasonable performance
(achieved ~8 dB SNR)
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Axion Mass (ueV)
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Amplifier." arXiv preprint arXiv:2110.10262 (2021).
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AD
MX (2010, 2018, 2019
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Near-term ADMX strategy

2022--23 2023--25 2025--

Axion Mass (ueV)
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Frequency (MHz)
Single cavity 4-Cavity array 18-Cavity array
Big tuning rod

Courtesy of Jihee Yang
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Multi-cavity arrays

Fine Tuning Linear Stage

Coarse Tuning Rotary Stage

—_— Fine Tuning Rod

g ¢ ' | Upper Coarse Tuning Wheel

Upper Bearing

Cavity

Coarse Tuning Rod

Axle

—a ‘l [/ Critically Coupled Antenna

[l-——— Antenna Actuator

4-cavity array planned for
University of Washington

o 1.4-2.2 GHz

 Amplitude-combine cavities in phase for
improved SNR.

 Scan rate ~ (N)2: N cavities in phase
allows factor of N increase in scan rate
relative to power combining after the fact

o Setup has common rotor with coarse
tuning rods.

* Fine-tuning done by perturbing fields
with sapphire mounted to linear stage.
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Full Cavity 2A Assembly

2A Cavity Array Overview

Cavity 2A Assembly Cross Section

Antenna Actuator
Upper Coarse
Tuning Wheel

Fine Tuning
Rod Actuator \

Cavity 2A Assembly Top

Coarse Tuning
Coarse Tuning Rod Rotary Actuator

Cavity

Axle

Lower Bearing

Run 2A & 2B
Frequency range: 1.4-2 GHz
Volume: 76 liters

Anticipated Quni0ageq ~ 130k

Component construction
essentially complete (U. of Florida)

Copper plating completed (LLNL)

Initial assembly of empty cavity system at
LLNL

Awaiting relaxation of “shelter-in-place”
orders to finish room-temperature testing
and operations with tuning rods.

In parallel work on custom power combiners
optimized for frequency range (Wash. U. St
Louis)
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Multi-cavity arrays

4-cavity main cavity assembly at LLNL

i
I

N RUT

LLNL staff scientist Nathan Woollett (top) and UW
grad student Tom Braine (bottom)

34~

-35=
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S11 parameters Weakly Coupled for each Cavity

W
o
1

Empty Cavities
(no coarse tuning rods)

1.A: 1356.425 MHz
2.B:1356.396 MHz
3.C: 1356.019 MHz
4.D: 1356.419 MHz

Note: C did not have
feedthrough installed
yet”*

All empty cavities have
same frequency to within
30 kHz

] 1 ] "
1.352 1.354 1.356 1.358
Frequency(GHz)

"
1.360

Awaiting relaxation of “shelter-in-place” to continue
assembly and testing (including addition of tuning

rods)

System then shipped to Fermilab for cryogenic

testing.
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ADMX Run 2A/B Frequency Locking
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4 Cavity (v2) Mode Map

A\
>

—

e Prototype Room
Measurements down at U.

of Florida

e Locking protocol and
software implementation by

0 5 10 15 20 25 30 PNNL

 Awaiting cryo-testing at

Angle (de
gle (deg) FNAL
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ADMNX Extended Frequency Rang

* Scan rate goes as B+ = High
field critical for future axion
searches.

» Scan rate goes as V2 = Large #%® 7 ox
volume critical for future
axion searches.

« ADMX Collaboration plans to
use large-bore 9.4 T magnet
currently at UIUC.

« Room for R&D work in this
magnet as well!

Tuning rod is mounted to arms Tuning rod swung into position Array with fully assembled tuning

outside of array system




ADMX Extended Frequency Range

Baseline Requirement

Target Performance

Current Design

Frequency Range 2-4 GHz 2-4 GHz 2-4 GHz
Number of Resonant Cavities 14 14 18
Volume 380 Liters 30 Liters 258 Liters
Q 30,000 90,000 38,000

B Field 7.6 T 12.0T 94T
Form Factor 0.4 0.4 0.4
Noise Temperature 350 mK 325 mK 425 mK
Amplifier Squeezing 1 1.4 1
Operations Days 1000 1000 1000
Normalized FOM 1 30.3 20.8
Dark Matter Sensitivity

for DESZ Coupling 0.65 GeV/cc 0.12 GeV/cc 0.14 GeV/cc
Dark Matter Sensitivity

for KSVZ Coupling 0.15 GeV/ce 0.027 GeVl/cce 0.033 GeV/cc
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ADMX Extended Frequency Range

New Features

Horizontal magnet bore

Resonator
dilution
fridge

Extra modularity: cavity Flectronics
. dilution fridge

electronics are separate

from magnet bore

-
—
8 )

Large magnet volume;
258 liters

Resonat
or array

Preferred site for
ADMX-EFR: PWS8 Hall
at Fermilab

: 100 mK
Low noise

== e 9.4 Tesla
amplifiers

25 mK
0.01 Gauss

Other: Squeezing?
Superconducting
cavities?

(ADMX EFR Design)
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