

Wave-like Dark Matter and Axions

ICHEP Plenary Talk August 04 2020 Chelsea Bartram University of Washington

- Search idea using Migdal effect
- IAXO: Prospective Helioscope Experiment
- CAPP 8T: Haloscope Experiment
- Axion-like particle search with BABAR
- MADMAX experiment

Axions: Good Multi-Taskers Solve two problems at once!

Ok, maybe three...

Axions

What solves the Strong CP Problem?

Why I love my job?

Axions and Strong CP Problem

Strong Interactions -should- violate CP due to term in QCD Lagrangian

$$L_{\theta} = \frac{g^2}{32\pi^2} \theta_{QCD} F_a^{\mu\nu} \tilde{F}_{\mu\nu a}$$

CP-violation in strong interactions — Neutron EDM

- New limit on neutron EDM published this year!
- After many years searching: Still no neutron EDM!

$$d_n = (0.0 \pm 1.1_{stat} \pm 0.2_{sys}) \times 10^{-26} e \cdot cm$$

C. Abel et al. Phys. Rev. Lett. 124, 081803 — Published 28 February 2020

Axions and Strong CP Problem

$$L_{\theta} = \frac{g^2}{32\pi^2} \theta_{QCD} F_a^{\mu\nu} \tilde{F}_{\mu\nu a}$$

 Peccei-Quinn Solution to Strong CP Problem: Θ is now a dynamical variable which relaxes to zero at critical temperature.

 PQ Mechanism predicts a pseudo scalar boson which is the axion! (Weinberg, Wilçek)

Theoretical Constraints

Lower bound so of dark matter of dwarf galax	set by size halo size ies			Upper I SN1987A and	bound set by white dwarf cooling time
		eV			
10 -22	10 -18	10 -14	10 -10	10 -6	10 -2
I 10 ⁻⁸	I 10 ⁻⁴	1 1	I 10 ⁴	І 10 ⁸	I 10 ¹²
		H	Z		
Pre-ir	nflation				

PQ phase transition

← →

Post-inflation PQ phase transition

PDG https://arxiv.org/pdf/1710.05413.pdf

Adaptation of L. Winslow DPF Slide

QCD axion:

- 1-100 µeV
- Two classes of models:
 - KSVZ (Kim-Shifman-Vainshtein-Zakharov):
 - couples to leptons
 - g_y=0.97
 - DFSZ (Dine-Fischler-Srednicki-Zhitnitsky):
 - couples to quarks and leptons
 - g_y=0.36

а^/
Z
б

What is wave-like dark matter?

Calculate de Broglie wavelength of axions:

$$\lambda \approx \frac{2\pi}{mv} \approx 100 \text{s of m}$$

Wavelength of the Conversion Photon: ~several meters

New techniques needed here.

"The axion had been declared invisible", says theorist Pierre Sikivie. "[I said], let me just calculate how invisible they truly are."

https://spectrum.ieee.org/aerospace/astrophysics/the-hunt-for-theinvisible-axion

7/20/20

10

Detection Methods Depend on Axion Interactions

Axion-like Particles Exclusion Plot

Axion Haloscopes

All use microwave cavity in magnetic field

Relies on Inverse Primakoff effect and resonant enhancement of cavity

Scan Rate: Figure of Merit for Haloscope Search

$$\frac{\mathrm{df}}{\mathrm{dt}} \approx 1.68 \frac{\mathrm{GHz}}{\mathrm{yr}} \left(\frac{g_{\gamma}}{0.36}\right)^4 \left(\frac{\mathrm{f}}{1 \mathrm{GHz}}\right)^2 \left(\frac{\rho_o}{0.45 \mathrm{GeV/cc}}\right)^2 \left(\frac{5}{\mathrm{SNR}}\right)^2 \left(\frac{\mathrm{B}_0}{8}\right)^4 \left(\frac{\mathrm{V}}{100 \mathrm{I}}\right)^2 \left(\frac{\mathrm{Q}_{\mathrm{L}}}{10^5}\right) \left(\frac{\mathrm{C}_{010}}{0.5}\right)^2 \left(\frac{0.2}{\mathrm{T}_{\mathrm{sys}}}\right)^2 \left(\frac{\mathrm{G}_{010}}{\mathrm{SNR}}\right)^2 \left(\frac{\mathrm{G}_{010}}{\mathrm{SNR}}\right)^$$

Can't Control

• B Field

Maximize

- Volume
- Quality Factor
- Form Factor

• Frequency

- Coupling
- Dark Matter Density

Minimize

- System noise:
- Amplifier Noise
- Physical Noise

ADMX Haloscope

- Dil Fridge: Reaches ~100 mK
- Superconducting magnet: ~can reach up to 8 T
- Quantum electronics: Josephson Parametric Amplifier (JPA)
- Field cancellation coil
- Microwave cavity and electronics

Hardware Synthetic Axion Injections

Excellent Confirmation of Ability To Detect DFSZ Axions!

ADMX Limits

Projected ADMX Sensitivity

Haystac

- Exploring higher frequency axions
- Using squeezed state receiver:
 Phys. Rev. X 9, 021023 (2019)
- Exploring Bayesian techniques:
 Phys. Rev. D 101, 123011 (2020)
- Pulse-tube dil fridge
- Phase 1 results complete
- Phase 2 underway

First Results from the Axion Haystac Search Benjamin M. Brubaker

CAPP-8T

 Exploring frequency range near 6.62-7.04 µeV (1.6-1.7 GHz)

Axion Dark Matter Search around 6.7 µeV S. Lee, S. Ahn, J. Choi, B. R. Ko, Y. K. Semertzidis Phys. Rev. Lett. 124, 101802 —Published 13 March 2020

Dielectric Haloscopes: MADMAX

²⁰ cm - 2 m

• Will probe 40-400 µeV range (10-100 GHz)

- 10 T field
- ~80 disks
- Prototype phase using dipole magnet at CERN

Power enhancement from EM waves emitted at the disk boundaries

Stefan Knirck and MADMAX interest group 2020 J. Phys.: Conf. Ser. 1342 012097 B. Majorovits and MADMAX interest groupt 2020 J. Phys.: Conf. Ser. 1342 012098

Helioscopes: IAXO

- Searching for axions/ALPs coming from the Sun
- IAXO requires stronger field and larger volume to improve sensitivity by a factor of 10 compared to its predecessor, CAST
- Goal: Reach axion masses up to 0.25 eV

Conceptual design of the International Axion Observatory (IAXO) E Armengauda, F T Avignoneb, M Betzc, P Braxd, P Bruna, G Cantatoree, J M Carmonaf, G P Carosig, F Caspersc, S Caspih Published 12 May 2014 • © CERN 2014 for the benefit of the IAXO collaboration. Journal of Instrumentation, Volume 9, May 2014 Migdal effect:

- Particle elastically scatters off nucleus—assumption that electron cloud follows immediately
- Not the reality—results in ionization and excitation of the atom
- Proposal to use this idea to search for dark matter in liquid noble as well as semiconductor detectors
- Maybe we've already seen it....

Electron ionization via dark matter-electron scattering and the Migdal effect Daniel Baxter, Yonatan Kahn, and Gordan Krnjaic Phys. Rev. D 101, 076014 — Published 20 April 2020

Search for Axion-like particles with BABAR

- ALPs produced in flavorchanging neutral current (FCNC) processes
- Uses coupling to W[±] boson
- Electron-positron collider search for invisibly decaying ALPs

There is still uncovered territory here, but that's all the time I have.

Thank you!

- Wave-like dark matter and axions are uncharted territory.
- Progress is being made, especially for the QCD axions, and even at DFSZ sensitivity!
- Real possibility of discovery around the corner!

CAPP: Latest results

Axion Dark Matter Search around 6.7 µeV S. Lee, S. Ahn, J. Choi, B. R. Ko, Y. K. Semertzidis Phys. Rev. Lett. 124, 101802 —Published 13 March 2020

MADMAX: Prospective Sensitivity

Haystac

Phase 1 results: Phys Rev D 97 092001 (2018)

Axion-like Particles Exclusion Plot

PDG 2018

Baby-IAXO

Demonstration of feasibility for IAXO

- 2 10 m long flat racetrack coils with 0.8 m spacing with common coil configuration
- Average field of 2.1 T in the 2 700 mm detection bores

H F P Silva et al 2020 IOP Conf. Ser.: Mater. Sci. Eng. 755 012132