

QSFP Workshop

Axions and Wave-like Dark Matter Tutorial

Chelsea Bartram September 7 2021

- Basic understanding of how axion haloscopes work.
- Equivalent circuit for the axion haloscope.
- Computing the sensitivity of the axion haloscope.
- Computing the doppler shift of the axion signal.
- Overview of coupled oscillators.

- Basic understanding of how axion haloscopes work.
- Equivalent circuit for the axion haloscope.
- Computing the sensitivity of the axion haloscope.
- Computing the doppler shift of the axion signal.
- Overview of coupled oscillators.

- Basic understanding of how axion haloscopes work.
- Equivalent circuit for the axion haloscope.
- Computing the sensitivity of the axion haloscope.
- Computing the doppler shift of the axion signal.
- Overview of coupled oscillators.

- Basic understanding of how axion haloscopes work.
- Equivalent circuit for the axion haloscope.
- Computing the sensitivity of the axion haloscope.
- Computing the doppler shift of the axion signal.
- Overview of coupled oscillators.

- Basic understanding of how axion haloscopes work.
- Equivalent circuit for the axion haloscope.
- Computing the sensitivity of the axion haloscope.
- Computing the doppler shift of the axion signal.
- Overview of coupled oscillators.

- Basic understanding of how axion haloscopes work.
- Equivalent circuit for the axion haloscope.
- Computing the sensitivity of the axion haloscope.
- Computing the doppler shift of the axion signal.
- Overview of coupled oscillators.

The Axion Haloscope

8 9/5/21

ADMX

- Dil Fridge: Reaches~100 mK
- Superconducting magnet:~can reach up to 8 T
- Quantum electronics:
 Josephson Parametric
 Amplifier (JPA)
- Field cancellation coil
- Microwave cavity and electronics

9 9/5/21

•When looked at from any one pair of terminals, any arbitrary circuit made of ideal impedances and generators is, at any given frequency, equivalent to a generator epsilon in series with an impedance z.

In a cavity axion detector the source is the axion field coupling to modes in the resonant cavity.

Red is cartoon magnetic field Blue is cartoon electric field

$$L = \frac{L}{2}\dot{q}^2 - \frac{1}{2C}q^2 + qV(t)$$

Write out the Lagrangian for the circuit

$$L = \frac{L}{2}\dot{q}^2 - \frac{1}{2C}q^2 + qV(t)$$

$$F = \frac{1}{2}R\dot{q}^2$$

Write down the dissipative term from the resistor

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) - \frac{\partial L}{\partial q} + \frac{\partial F}{\partial \dot{q}} = 0$$

Write down the Euler-Lagrange Equation

$$L\ddot{q} - \frac{q}{C} + V(t) + R\dot{q} = 0$$

And compute it...

 The Lagrangian describing the coupling of the axion to the electric and magnetic fields is as follows:

$$\mathscr{L} = -\epsilon_0 g_{a\gamma\gamma} a \vec{E} \cdot \vec{B}$$

 The Lagrangian describing the coupling of the axion to the electric and magnetic fields is as follows:

$$\mathscr{L} = -\epsilon_0 g_{a\gamma\gamma} a \vec{E} \cdot \vec{B}$$

$$q(t)V(t) = -g_{a\gamma\gamma}a(t)c\epsilon_0 \int_V dV \vec{E}(\vec{x},t) \cdot \vec{B}(\vec{x},t)$$

Integral of this over the cavity volume is equal to the source in the equivalent circuit

- Compute the form factor.
- Form factor is the overlap of the electric and magnetic fields.
- Can you think of different ways to manipulate the form factor?

$$f_{nlm} = \frac{\left(\int_{V} \vec{E}(\vec{x}, t) \cdot \vec{z}\right)^{2}}{V \int_{V} dV \epsilon_{r} E^{2}}$$

Red is cartoon magnetic field Blue is cartoon electric field

$$f_{nlm} = \frac{\left(\int_{V} \vec{E}(\vec{x}, t) \cdot \vec{z}\right)^{2}}{V \int_{V} dV \epsilon_{r} E^{2}} \longrightarrow \frac{q^{2}}{2C} = \frac{\epsilon_{0}}{2} \int_{V} dV \epsilon_{r} E^{2}$$

Form factor

Charge - Energy density relationship

$$\int_{V} dV \vec{E}(\vec{x}, t) \cdot \vec{z} = q \sqrt{\frac{f_{nlm}V}{\epsilon_0 C}}$$

Substitute that equation into the equation for the source term

$$V(t) = -g_{a\gamma\gamma}cB_0\sqrt{\frac{f_{nlm}V\epsilon_0}{C}}a(t)$$

$$V(t) = -g_{a\gamma\gamma}cB_0\sqrt{\frac{f_{nlm}V\epsilon_0}{C}}a(t)$$

We know that Power = V^2/R , so let's compute the power!

$$P = \frac{\langle V^2(t) \rangle}{R} = g_{a\gamma\gamma}^2 c^2 \epsilon_0 B_0^2 V f_{nlm} \frac{1}{RC} \langle a^2(t) \rangle$$

$$P = \frac{\langle V^2(t) \rangle}{R} = g_{a\gamma\gamma}^2 c^2 \epsilon_0 B_0^2 V f_{nlm} \frac{1}{RC} \langle a^2(t) \rangle$$

Substitute in the definition of quality factor and resonant frequency for an RLC circuit

High Q —> Higher Probability of Photon/Axion Bounces —> Higher Conversion Rate

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}} \qquad \omega_0 = \frac{1}{\sqrt{LC}} \qquad \frac{1}{RC} = \omega_0 Q$$

$$P = g_{a\gamma\gamma}^2 c^2 \epsilon_0 B_0^2 V f_{nlm} \omega_o Q \langle a^2(t) \rangle$$

$$P = g_{a\gamma\gamma}^2 c^2 \epsilon_0 B_0^2 V f_{nlm} \omega_o Q \langle a^2(t) \rangle$$

$$\langle a^2(t) \rangle = \frac{\rho_a \hbar^2}{m_a^2 c}$$

$$P = g_{a\gamma\gamma}^2 c^2 \epsilon_0 B_0^2 V f_{nlm} \omega_o Q \frac{\rho_a \hbar^2}{m_a^2 c}$$

$$P = g_{a\gamma\gamma}^2 c^2 \epsilon_0 B_0^2 V f_{nlm} \omega_o Q \left[\frac{\rho_a \hbar^2}{m_a^2 c} \right]$$

$$g_{a\gamma\gamma}(\text{GeV}^{-1}) = 10^{-7}\text{GeV}^{-1} \left(\frac{M_a}{0.62 \,\text{eV}}\right) \frac{\alpha g_{\gamma}}{\pi}$$

$$\frac{g_{a\gamma\gamma}^2 \rho_a}{m_a^2} = (3.64 \times 10^{-19})^2 \text{eV}^{-4} (3.44 \times 10^{-6}) \text{eV}^4 = 4.56 \times 10^{-43}$$

$$P = (2.86 \times 10^{-42})c^2 \epsilon_0 B_0^2 V f_{nlm} f_a Q$$

Power in terms of physical parameters of the receiver

Magnetic Field

Signal-to-noise

- Johnson noise = thermal noise associated with the resistance of the cavity walls
- Assume total noise may be modeled as Johnson noise at some effective temperature Tsys
- Aka, the amplitude distribution of the noise voltage within a bandwidth b is Gaussian
- Noise power is proportional to the variance of this voltage distribution
- Standard error of the variance of a Gaussian gives us:

$$\delta P_N = \sqrt{\frac{2}{n-1}} k_B T_{\rm sys} \Delta \nu \qquad n = 2 \Delta \nu \tau$$

Example synthetic candidate spectra

$$\delta P_N = \frac{k_B T_{\rm sys} \Delta \nu}{\sqrt{\Delta \nu \tau}}$$

N is the number of independent samples drawn from the Gaussian distribution

Computing the scan speed and sensitivity

$$\frac{df}{dt} \approx 543 \frac{\mathrm{MHz}}{\mathrm{yr}} \left(\frac{B}{7.6 \, \mathrm{T}}\right)^4 \left(\frac{V}{136 \, \ell}\right)^2 \left(\frac{Q_l}{30000}\right) \left(\frac{C}{0.4}\right) \left(\frac{g_{\gamma}}{0.36}\right)^4 \left(\frac{f}{740 \, \mathrm{MHz}}\right)^2 \left(\frac{\rho}{0.45 \, \mathrm{GeV/cm^3}}\right)^2 \left(\frac{0.2 \, \mathrm{K}}{\mathrm{T_{sys}}}\right)^2 \left(\frac{3.5}{\mathrm{SNR}}\right)^2$$

Maximize

B Field

- Volume
- Quality Factor
- Form Factor

Can't Control

- Frequency
- Coupling
- Dark Matter Density

Minimize

- System noise:
- Amplifier Noise
- Physical Noise

Computing the scan speed and sensitivity

$$\frac{df}{dt} \approx 543 \frac{\text{MHz}}{\text{yr}} \left(\frac{B}{7.6 \,\text{T}}\right)^4 \left(\frac{V}{136 \,\ell}\right)^2 \left(\frac{Q_l}{30000}\right) \left(\frac{C}{0.4}\right) \left(\frac{g_{\gamma}}{0.36}\right)^4 \left(\frac{f}{740 \,\text{MHz}}\right)^2 \left(\frac{\rho}{0.45 \,\text{GeV/cm}^3}\right)^2 \left(\frac{0.2 \,\text{K}}{T_{\text{sys}}}\right)^2 \left(\frac{3.5}{\text{SNR}}\right)^2$$

$$T_{\rm sys} = T_{\rm amp} + T_{\rm phys}$$

Maximize

Can't Control

Minimize

- B Field
- Volume
- Quality Factor
- Form Factor

- Frequency
- Coupling
- Dark Matter Density

- System noise:
- Amplifier Noise
- Physical Noise

Assume we want to cover a frequency range of 220 MHz in 6 months. What physical temperature is needed?

Axion Search Challenge

Power-combining multiple cavities is one idea. Can you think of more?

(If you do maybe you will find the axion first and get the Nobel Prize...)

Doppler shift of the axion

Motion of the earth through: galaxy + orbital + rotational motion = axion doppler shift

- Can be used to further discriminate power excesses.
- High resolution analyses sensitive to the frequency shift.

MOTION OF EARTH AND SUN AROUND THE MILKY WAY

Can compute the frequency shift

 $hf = m_a c^2 + (1/2) m_a \vec{v} \cdot \vec{v}$

Relative velocity of the axion flow and detector

$$\vec{v} = \vec{v_a} - \vec{v}_{det}$$

Detector velocity

Speed of the detector (Seattle) on the surface of earth 0.3 km/s

Speed of the sun around galaxy

220 km/s

Speed of the earth around the sun

30 km/s

Can compute the frequency shift

$$hf = m_a c^2 + (1/2) m_a \vec{v} \cdot \vec{v}$$

Relative velocity of the axion flow and detector

$$\vec{v} = \vec{v_a} - \vec{v}_{det}$$

Detector velocity

$$\vec{v}_{det} = \vec{v}_{\odot} + \vec{v}e + \vec{v}_{U}$$

$$hf = m_a c^2 \left(1 + \frac{\vec{v}_a^2 + \vec{v}_{\bigcirc}^2 - 2\vec{v}_a \cdot \vec{v}_{\bigcirc}}{2c^2} + \frac{(\vec{v}_{\bigcirc} - \vec{v}_a) \cdot (\vec{v}_e + \vec{v}_U)}{c^2} \right)$$

$$\downarrow \qquad \qquad \downarrow$$

$$O(10^{-6}) \qquad \frac{df}{dt} = f_0 \left(\frac{(\vec{v}_{\bigcirc} - \vec{v}_a)}{c^2} \cdot \left(\frac{d\vec{v}_e}{dt} + \frac{d\vec{v}_U}{dt} \right) \right)$$

$$f_0 = \frac{m_a c^2}{h}$$

Calculate the frequency shift of an axion

$$\frac{df}{dt} = f_0 \left(\frac{(\vec{v}_{\odot} - \vec{v}_a)}{c^2} \cdot \left(\frac{d\vec{v}_e}{dt} + \frac{d\vec{v}_U}{dt} \right) \right)$$

Ecliptic angle = 60 degrees Earth axis angle = 37 degrees

$$V_e = 30 \text{ km/s}$$
 $V_a = (618,0,0)$

$$V_U = 0.3 \text{ km/s}$$
 $V_C = (0,220,0)$

$$V_0 = 220 \text{ km/s}$$

$$\frac{d\vec{v_e}}{dt} \approx \frac{\pm v_e \hat{r} \pm v_e \cos 60^{\circ} \phi \pm v_e \sin 60^{\circ} \hat{z}}{3 \text{ months}}$$

$$\frac{d\vec{v_U}}{dt} \approx \frac{\pm v_U \hat{r} \pm v_U \cos 37^\circ \phi \pm v_U \sin 37^\circ \hat{z}}{6 \text{ hours}}$$

At a frequency of 692 MHz, how far does the signal shift in 8 minutes?

Calculate the frequency shift of an axion

$$\frac{df}{dt} = f_0 \left(\frac{(\vec{v}_{\odot} - \vec{v}_a)}{c^2} \cdot \left(\frac{d\vec{v}_e}{dt} + \frac{d\vec{v}_U}{dt} \right) \right)$$

Ecliptic angle = 60 degrees Earth axis angle = 37 degrees

$$V_e = 30 \text{ km/s}$$
 $V_a = (618,0,0)$

$$V_U = 0.3 \text{ km/s}$$
 $V_C = (0,220,0)$

$$V_0 = 220 \text{ km/s}$$

$$\frac{d\vec{v_e}}{dt} \approx \frac{\pm v_e \hat{r} \pm v_e \cos 60^{\circ} \phi \pm v_e \sin 60^{\circ} \hat{z}}{3 \text{ months}}$$

$$\frac{d\vec{v_U}}{dt} \approx \frac{\pm v_U \hat{r} \pm v_U \cos 37^{\circ} \phi \pm v_U \sin 37^{\circ} \hat{z}}{6 \text{ hours}}$$

At a frequency of 692 MHz, how far does the signal shift in 8 minutes? 54.1 mHz

Coupled oscillators

Can describe the total potential energy as

$$V = \frac{m}{2} \left(\frac{g}{L_a} x_a^2 + \frac{g}{L_b} x_b^2 + \frac{k}{m} (x_b - x_a)^2 \right)$$

$$V = \frac{m}{2} (x_a x_b) \begin{pmatrix} \frac{g}{L_a} + \frac{k}{m} & -\frac{k}{m} \\ -\frac{k}{m} & \frac{g}{L_b} + \frac{k}{m} \end{pmatrix} \begin{pmatrix} x_a \\ x_b \end{pmatrix}$$

Matrix is real and symmetric and so orthogonally diagonalizable

Axion Case

Pendulum 1: Axion

Pendulum 2: Photon

Weak spring: axion-photon coupling

Neutrino Case

Pendulum 1: Electron neutrino

Pendulum 2: Tau neutrino

Weak spring: mixing angle

Coupled oscillators

Can describe the total potential energy as

$$V = \frac{m}{2} \left(\frac{g}{L_a} x_a^2 + \frac{g}{L_b} x_b^2 + \frac{k}{m} (x_b - x_a)^2 \right)$$

$$V = \frac{m}{2} (x_a x_b) \begin{pmatrix} \frac{g}{L_a} + \frac{k}{m} & -\frac{k}{m} \\ -\frac{k}{m} & \frac{g}{L_b} + \frac{k}{m} \end{pmatrix} \begin{pmatrix} x_a \\ x_b \end{pmatrix}$$

Matrix is real and symmetric and so orthogonally diagonalizable

There exists an angle theta such that

$$\begin{pmatrix} x_a \\ x_b \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

We call this the mixing angle.

$$V = \frac{m}{2}(x_1 x_2) \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

x1 and x2 are normal modes which oscillate with frequencies

$$\sqrt{\lambda_1}$$
 $\sqrt{\lambda_2}$

Coupled oscillators

- Axion field and the cavity are like two coupled oscillators
- Generalized coupled oscillator problem:
 - Neutrino oscillation
 - Coupled circuits
 - Two pendula with weak spring

Let's open and run the Jupyter notebook!

Notice that the max transfer of energy is when theta = 45 degrees. In the axion example, this corresponds to having the cavity on resonance!

Thanks everyone! Other questions?

