Finding the signal in the noise: an exploration of the Axion Dark Matter eXperiment analysis

Chelsea Bartram

What are axions?

Wave-like dark matter

• What does this mean?

$$a(\vec{x},t) = \frac{\sqrt{(2\rho_{DM})}}{m_a} \cos\left(m_a t + \mathcal{O}(\nu_a t)\right)$$

ром: dark matter density ma: axion mass

Calculate de Broglie wavelength of axions:

$$\lambda pprox rac{2\pi}{mv}$$
 $pprox$ 10 m - 100 km

Wavelength of the Conversion Photon: ~meter

Axions and Strong CP Problem

Strong Interactions -should- violate CP due to term in QCD Lagrangian

$$L_{\theta} = \frac{g^2}{32\pi^2} \theta_{QCD} F_a^{\mu\nu} \tilde{F}_{\mu\nu a}$$

CP-violation in strong interactions — Neutron EDM

- New limit on neutron EDM published this year!
- After many years searching: Still no neutron EDM!

$$d_{n} = (0.0 \pm 1.1_{stat} \pm 0.2_{sys}) \times 10^{-26} e \cdot cr$$

C. Abel et al. Phys. Rev. Lett. 124, 081803 — Published 28 February 2020

m

https://www.physics.uoguelph.ca/ radon-electric-dipole-moment

Axion Benchmarks

1-100 µeV mass range to constitute entirety of dark matter

- Two classes of models:
 - KSVZ (Kim-Shifman-Vainshtein-Zakharov):
 - couples to leptons
 - Range of g_v values, typically g_v =-0.97 used
 - DFSZ (Dine-Fischler-Srednicki-Zhitnitsky):
 - couples to quarks and leptons
 - Range of g_{γ} values, typically g_{γ} =0.36 used

Axion Benchmarks

1-100 µeV mass range to constitute entirety of dark matter

- Two classes of models:
 - KSVZ (Kim-Shifman-Vainshtein-Zakharov):
 - couples to leptons
 - Range of g_v values, typically g_v =-0.97 used
 - DFSZ (Dine-Fischler-Srednicki-Zhitnitsky):
 - couples to quarks and leptons
 - Range of g_{γ} values, typically g_{γ} =0.36 used

Some more numbers...

Just how small is our signal? "Yoctowatts" or 10⁻²³ watts!

This is the smallest named unit by the SI International Standard of Units

This implies some other small numbers

- 100 mK temperatures. Colder than interstellar space! (~3 K).
- 8 T magnet field. Stronger than your typical MRI magnet! (~3T).

1111

Jan Ainali

NASA, ESA, and R. Sahai (Jet Propulsion Laboratory)

ADMX Collaboration

- Founded in 1994 at LLNL
- One of 3 "Gen-2" Dark Matter Projects
- Now located at University of Washington

Fermilab

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

How to detect an axion

Axion Haloscope

- Extremely sensitive AM receiver in a magnetic field.
- Microwave resonator approach.
- Uses a dilution refrigerator and ultra-low noise amplifiers to reduce background.

Sikivie, Pierre. "Experimental tests of the" invisible" axion." *Physical Review* Letters 51.16 (1983): 1415.

Pierre Sikivie

ADMX Haloscope

11/9/20

Axion Lineshape (Velocity Distribution)

Other lineshapes possible, such as 'N-body' lineshape

Maxwell-Boltzmann Distribution with annual and diurnal signal modulation

ADMX

- Dil Fridge: Reaches
 ~100 mK
- Superconducting magnet:
 ~can reach up to 8 T
- Quantum electronics: Josephson Parametric Amplifier (JPA)
- Field cancellation coil
- Microwave cavity and electronics

Dilution Refrigerator Mounted to Cavity

Experiment!

Quantum Electronics Package

Josephson Parametric Amplifier (JPA)

- Critical to obtaining low amplifier noise
- How does a parametric amplifier work?
 - Classic example is child on a swing
 - Anharmonicty leads to energy transfer from the pump tone to the signal tone
 - Requires some non-linear element, in this case, the Josephson Junction

Figures courtesy of Shahid Jawas

ADMX Rigging Operation

Top of the ADMX "insert" after being moved into the magnet bore

RF cables

DC cables for sensors

11/9/20

0 K	
К	ADMX RF Schematic
к	
	3 important RF paths to highlight
) mK	
) mK	

00	0 K
4	К
1	К
0	mΚ

Transmission Measurement RF Path

Transmission Measurement Gives: Resonant frequency

Quality factor

Same path is used to inject synthetic axion signals

0 K 	Reflection Measurement RF Pat
κ	Reflection Measurement gives: • Antenna Coupling
mK	
mK	

)0 K	
К	
ĸ	

250 mK

Ch 1 Signal Path

Weak port line is terminated. Signal read out directly from the cavity.

This is our configuration for data acquisition (digitization).

Tuning our cavity

As we tune, we track the TM010 mode Axion couples most strongly to this mode Note occasional mode-crossings

Frequency in MHz

Zooming in on a single mode

Run Cadence

Data-taking operations:

- 1st pass through determine if we rescan
- Interrupted by noise temperature measurements
- 2nd pass through to achieve necessary sensitivity, or eliminate rescan regions

Scan Rate: Figure of Merit for Haloscopes

$$\frac{df}{dt} \approx 157 \frac{\mathrm{MHz}}{\mathrm{yr}} \left(\frac{g_{\gamma}}{0.36}\right)^4 \left(\frac{f}{740 \mathrm{~MHz}}\right)^2 \left(\frac{\rho}{0.45 \mathrm{~GeV/cm^3}}\right)^2 \left(\frac{3.5}{\mathrm{SNR}}\right)^2 \left(\frac{B}{7.6 \mathrm{~T}}\right)^4 \left(\frac{V}{136 \ell}\right)^2 \left(\frac{Q_{\mathrm{L}}}{30,000}\right) \left(\frac{C}{0.4}\right) \left(\frac{0.2 \mathrm{~K}}{T_{\mathrm{sys}}}\right)^2 \left(\frac{1}{100 \mathrm{~K}}\right)^2 \left($$

Can't Control

Dark Matter Density

Minimize

• System noise:

- Amplifier Noise
- Physical Noise

Some Typical Values

$$\frac{df}{dt} \approx 157 \frac{\text{MHz}}{\text{yr}} \left(\frac{g_{\gamma}}{0.36}\right)^4 \left(\frac{f}{740 \text{ MHz}}\right)^2 \left(\frac{\rho}{0.45 \text{ GeV/cm}^3}\right)^2 \left(\frac{3.5}{\text{SNR}}\right)^2 \left(\frac{B}{7.6 \text{ T}}\right)^4 \left(\frac{V}{136 \ell}\right)^2 \left(\frac{Q_{\text{L}}}{30,000}\right) \left(\frac{C}{0.4}\right) \left(\frac{0.2 \text{ K}}{T_{\text{sys}}}\right)^2 \left(\frac{3.5}{30,000}\right)^2 \left(\frac{Q_{\text{L}}}{30,000}\right) \left(\frac{C}{0.4}\right) \left(\frac{0.2 \text{ K}}{T_{\text{sys}}}\right)^2 \left(\frac{Q_{\text{L}}}{30,000}\right)^2 \left(\frac{Q_{\text{L}}}{30,000}\right) \left(\frac{C}{0.4}\right) \left(\frac{0.2 \text{ K}}{T_{\text{sys}}}\right)^2 \left(\frac{Q_{\text{L}}}{30,000}\right)^2 \left(\frac{Q_{\text{L}}}{30,000}\right) \left(\frac{C}{0.4}\right) \left(\frac{0.2 \text{ K}}{T_{\text{sys}}}\right)^2 \left(\frac{Q_{\text{L}}}{30,000}\right)^2 \left(\frac{Q_{\text{L}}}{30,000}\right) \left(\frac{Q_{\text{L}}}{30,000}\right) \left(\frac{Q_{\text{L}}}{0.4}\right) \left(\frac{Q_{\text{L}}}{10.4}\right)^2 \left(\frac{Q_{\text{L}}}{30,000}\right) \left(\frac{Q_{\text{L}}}{10.4}\right)^2 \left(\frac{Q_{\text{L}}}{30,000}\right) \left(\frac{Q_{\text{L}}}{10.4}\right)^2 \left(\frac{Q_{\text{L}}}{30,000}\right) \left(\frac{Q_{\text{L}}}{10.4}\right) \left(\frac{Q_{\text{L}}}{10.4}\right)^2 \left(\frac{Q_{\text{L}}}{10.$$

.

24

Noise Characterization

- Receiver chain provides means for measuring key RF parameters, such as quality factor
 - Two types of noise measurement
 - 1) Heating of the 'hot-load' via dc current (by design)
 - 2) Heating of the quantum amplifier package via an RF switch

Noise Characterization

$$P = G_{\rm HFET} k_{\rm B} \left[T_{\rm JPA} (1 - \epsilon) + T_{\rm cav} \epsilon + T \right]$$

Fit parameters:

- Attenuation from cavity to HFET amp
- Receiver Temperature

JPA Rebiasing Procedure Gives our SNRI!

JPA Biasing

 $\text{SNRI} = \frac{G_{\text{on}}}{G_{\text{off}}} \frac{P_{\text{off}}}{P_{\text{on}}}$

 $T_{
m sys}$

$_{\rm s} = \frac{T_{\rm HFET}}{\epsilon({ m SNRI})}$

Some Typical Parameter Values

SNRI as a function of time

- Aberrations could be due to gain compression, etc.
- Removed with data quality cuts.

Quality factor as a function of frequency

- Aberrations usually the result of a fit.
- Removed with data quality cuts.
- Smoothed over 30 min time period

Some Typical Parameter Values

Form factor: Overlap of Magnetic and Electric Fields

$$C_{010} = \frac{|\int dV \vec{B}_{\text{ext}} \cdot \vec{E_a}|^2}{B_{\text{ext}}^2 \int dV |\vec{E_a}|^2}$$

Two types of analysis:

Medium-resolution analysis (described here):

- Can detect persistent axion signal.
- Assumes isothermal velocity distribution.
- 100 Hz bin width.
- High-resolution analysis (not described here):
- Can search for much narrower peak due to discrete axion flow.
- Can detect annual and diurnal modulation of the axion, if detected.
- 0.01 mHz bins width.

Raw spectrum processing:

~50 kHz wide raw spectra, 100 Hz bins

Baseline Removal:

• The warm electronics shape is identified by averaging and filtering off-resonance scans.

Raw spectrum processing:

- Raw spectra are divided by the receiver shape and filtered (Padé filter: designed to fit out wide structure and ignore narrow axion-like peaks)
- Subtract 1 from each bin to obtain ~Gaussian white noise

Raw spectrum processing:

Scale by the Lorentzian (cavity line shape)

Grand spectrum processing

- Scale spectra by the average noise power per bin to achieve signal peaks independent of noise temperature.
- Filter spectra using the expected axion line shape
- Combine spectra using an optimal weighting procedure.

Software Synthetic Injections

le8	

)4	le8	

- Used to determine our detection efficiency and verify our analysis
- Developed by undergraduate \bullet student Hima Korandla, with my supervision
 - Simulated analysis data
 - Software synthetic injections for Run 1C

Rescan Procedure

When do you decide to rescan?

3 conditions:

- Not enough data (low SNR)
- 3σ excess

Excess at DFSZ threshold or above

37

ADMX Search Decision Tree

ADMX Search Decision Tree

Hardware Synthetic Axion Injections

Verifying the axion signal

- A true axion signal
- Only observed within the confines of the cavity and magnetic field
- Persistent
- Remains when the synthetic axion generator is turned off
- Lorentzian line shape that follows that of the cavity
- Suppressed in non-TM010 modes
- Scales as B² (where B is the magnetic field)
- Small daily and annual frequency modulation

Filling in mode-crossings

Rods can be moved in anti-symmetric mode to fill in gaps due to mode-crossings.

This shifts the location of modes within the cavity because the tuning rods change the boundary conditions.

Drawing a Limit

- Grand Spectrum consists of measured power
- 2) measured uncertainties
- To convert to a limit:
- value in the grand spectrum.
- For more details, please see: Bartram, C., et al. "Axion Dark Matter eXperiment: Run 1B Analysis Details." arXiv preprint arXiv:2010.06183 (2020).

Find the value for g_v that gives us the desired C.L. for a particular measured

Extended Search for the Invisible Axion with the Axion Dark Matter Experiment

T. Braine et al. (ADMX Collaboration)

Phys. Rev. Lett. 124, 101303 — Published 11 March 2020

This work was supported by the U.S. Department of Energy through Grants No DE-SC0009800, No. DE-SC0009723, No. DE-SC0010296, No. DE-SC0010280, No. DE-SC0011665, No. DEFG02-97ER41029, No. DE-FG02-96ER40956, No. DEAC52-07NA27344, No. DE-C03-76SF00098 and No. DE-SC0017987. Fermilab is a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. Additional support was provided by the Heising-Simons Foundation and by the Lawrence Livermore National Laboratory and Pacific Northwest National Laboratory LDRD offices.

ADMX Collaboration Fermilab Collaboration Meeting in 2018

Conclusions

Axions are exciting!

- ADMX Run 1B achieved DFSZ sensitivity for 100% axion dark matter density in the range from 680-800 MHz, corresponding to a mass range from 2.81-3.31 µeV
- Run 1C currently underway
- ADMX is on track to continue its search for axions. Discovery could happen at any moment!
- Progress being made towards higher frequency searches

11/9/20

Different types of analyses possible Current result looks for what value of g_{γ} gives us the desired C.L. for a particular measured value of μ

Personally interested in discussing other types of analysis, such as Bayesian

ADMX Collaboration

- Founded in 1994 at LLNL
- One of 3 "Gen-2" Dark Matter Projects
- Now located at University of Washington

Fermilab

UF UNIVERSITY of FLORIDA

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

DF

