Winds of change in wave-like dark matter

Rising Stars Symposium Chelsea Bartram

What is dark matter?

'Invisible' matter that would be able to explain:

- Anisotropies in the cosmic microwave background
- Rotation curves of galaxies
- Behavior of galaxy cluster collisions
- Matter Radiation Fluctuations
- Primordial nucleosynthesis
- Gravitational lensing
- Baryon Acoustic Oscillations

Characteristics of the dark matter:

- Cold (non-relativistic)
- Feebly-interacting
- •Non-baryonic
- Gravitationally-interacting
- Very stable

ESA and the Planck Collaboration

Vera Rubin

Axions as Dark Matter

1-100 µeV mass range to constitute entirety of dark matter

- Two classes of models:
 - KSVZ (Kim-Shifman-Vainshtein-Zakharov):
 - couples to leptons
 - Range of g_v values, typically g_v =-0.97 used
 - DFSZ (Dine-Fischler-Srednicki-Zhitnitsky):
 - couples to quarks and leptons
 - Range of g_{γ} values, typically g_{γ} =0.36 used

Neutron electric dipole moment

strong CP problem

EDM would violate T (CP) symmetry

Peccei-Quinn Mechanism

- Peccei-Quinn devised solution that upgraded theta to dynamical variable
- Tips the wine-bottle potential so that lowest energy configuration precludes existence of neutron EDM
- 'PQ' mechanism -> pseudo scalar boson (axion)

Steven Weinberg (1933-2021)

Frank Wilçek

The Axion Haloscope

Axion Dark Matter eXperiment

- Resonant cavity in a magnetic field ('haloscope')
- Relying on inverse Primakoff effect
- High-Q —> Higher probability of axion to photon conversion
- Have reached DFSZ benchmark sensitivity with the ADMX detector

sion 1X detecto

FOUNDATION

ADMX

- Dil Fridge: Reaches
 ~100 mK
- Superconducting magnet:
 ~can reach up to 8 T
- Quantum electronics: Josephson Parametric Amplifier (JPA)
- Field cancellation coil
- Microwave cavity and electronics

In cleanroom

In magnet bore

Data-taking operations 2019-2021

High-res Medium-res

- 100 Hz bin width
- Saved as power spectral
- Isothermal halo model
- Bin width optimized for expected axion lineshape

- 10 mHz native bin width
- Saved as time-series
- Non-virialized axions
- Sensitive to frequency modulation from orbital and rotational motion

Data-taking operations 2019-2021

Medium-res

Driving the data-taking operations!

- 100 Hz bin width
- Saved as power spectra
- Isothermal halo model
- Bin width optimized for expected axion lineshape

High-res

- 10 mHz native bin width
- Saved as time-series
- Non-virialized axions
- Sensitive to frequency modulation from orbital and rotational motion

Axion Doppler Shift

Synthetic Axion Generator

Type 1:

Injections that we use to verify the integrity of the receiver chain and sensitivity

- Turned off in final sweep through frequency range; verified as synthetics.
- 10-12 per 10 MHz.

Type 2:

Injection used to practice full axion detection procedure

•Stay on until the ADMX operators determine that they are not real signals.

• 1-2 per run.

Watt

Power

SNR

8.9640

8.9642

Upgrades made to Synthetic **Axion Generator** (SAG) for Run 1C

candidate: 896.448 MHz $\times 10^{-21}$

8.9644 8.9646

frequency [Hz]

17

$$\frac{df}{dt} \approx 543 \frac{\mathrm{MHz}}{\mathrm{yr}} \left(\frac{B}{7.6 \mathrm{\,T}}\right)^4 \left(\frac{V}{136 \,\ell}\right)^2 \left(\frac{Q_l}{30000}\right) \left(\frac{C}{0.4}\right) \left(\frac{g_{\gamma}}{0.36}\right)^4 \left(\frac{f}{740 \mathrm{\,MHz}}\right)^2 \left(\frac{\rho}{0.45 \mathrm{\,GeV/cm^3}}\right)^2 \left(\frac{0.2 \mathrm{\,K}}{\mathrm{T}_{\mathrm{sys}}}\right)^2 \left(\frac{3.5 \mathrm{\,KR}}{\mathrm{SNR}}\right)^2 \left(\frac{1}{100 \mathrm{\,KR}}\right)^2 \left(\frac{1}{$$

Two factors here are inextricably linked...

Small volume

 C_{010} -

Higher frequency (mass) of axion you can detect

Red is cartoon magnetic field Blue is cartoon axion electric field

 B^2_{ex}

Smaller wavelength of TM010 mode

$$\frac{dV\vec{B_{ext}}\cdot\vec{E_a}|^2}{dV\epsilon_r|\vec{E_a}|^2}$$

Axion scaling challenge?

Smaller Volumes

Slower Scan Rate

22

Where do we go from here?

Near-Term

Multi-Cavity Systems

Longer-Term

Something Completely **Different?**

Future

Sidecar Experiment

- Sidecar is a small prototyping cavity that sits on top of the main cavity.
- This iteration of sidecar is testing:
 - Traveling Wave Parametric Amplifier (TWPA)
 - Clamshell cavity design
 - Piezo motors for antenna and tuning rod

Traveling Wave Parametric Amplifier

- Benefits of TWPA include
 - Broadband gain spans several GHz.
 - Eliminates need for an additional circulator (Less loss, more space)
 - Reasonable noise performance
- ADMX Sidecar Demonstration
 - Operated TWPA for several weeks in magnetic field
 - Reasonable performance (achieved ~8 dB SNR)

Multi-cavity arrays

4-cavity array planned for **University of Washington**

- 1.4-2.2 GHz
- Amplitude-combine cavities in phase for improved SNR.
- Scan rate ~ (N)²: N cavities in phase allows factor of N increase in scan rate relative to power combining after the fact
- Setup has common rotor with coarse tuning rods.
- Fine-tuning done by perturbing fields with sapphire mounted to linear stage.

ADMX Extended Frequency Range

- Scan rate goes as B⁴ = High field critical for future axion searches.
- Scan rate goes as $V^2 = Large$ volume critical for future axion searches.
- ADMX Collaboration plans to use large-bore 9.4 T magnet currently at UIUC.
- Room for R&D work in this magnet as well!

Tuning rod is mounted to arms outside of array

Tuning rod swung into position

ADMX Extended Frequency Range

New Features

- Horizontal magnet bore
- Extra modularity: cavity electronics are separate from magnet bore
- Large magnet volume: 258 liters
- Preferred site for ADMX-EFR: PW8 Hall at Fermilab
- Other: Squeezing? Superconducting cavities?

(ADMX EFR Design)

Resonant Haloscope Scan Rate

Two factors here are inextricably linked...

Small volume

 C_{010} .

Higher frequency (mass) of axion you can detect

Red is cartoon magnetic field Blue is cartoon axion electric field

 B_{ex}^2

Smaller wavelength of TM010 mode

$$\frac{dV\vec{B_{ext}}\cdot\vec{E_a}|^2}{dV\epsilon_r|\vec{E_a}|^2}$$

Resonant Feedback Concept Resonant feedback

Cavity

Nuclear Inst. and Methods in Physics Research, A, Volume 921, p. 50-56. https://arxiv.org/abs/1805.11523

Open Loop Gain Configuration

Freq (GHz)

Closed Loop Gain Configuration

- Generated resonances on the FPGA board.
- Shape from FPGA filter is Lorentzian.
- Can see resonances in a VNA measurement across the cavity.

Resonant Feedback Concept

- The injected tone is enhanced when on resonance, and diminished when off resonance.
- Behaves like cavity resonance.
- Further studies to ensue (noise studies, feedback controls).

Conclusions

- ADMX has completed the first half of Run 1C data-taking
- Will resume second half at DFSZ sensitivity after upgrades
- First implementation of a TWPA in a dark matter axion search
- Progress is being made towards higher frequency searches
- Discovery could happen at any moment.

Acknowledgements

This work was supported by the U.S. Department of Energy through Grants No DE-SC0009800, No. DE-SC0009723, No. DE-SC0010296, No. DE-SC0010280, No. DE-SC0011665, No. DEFG02-97ER41029, No. DE-FG02-96ER40956, No. DEAC52-07NA27344, No. DE-C03-76SF00098 and No. DE-SC0017987. Fermilab is a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. Additional support was provided by the Heising-Simons Foundation and by the Lawrence Livermore National Laboratory and Pacific Northwest National Laboratory LDRD offices.

