Searching for Axion Dark Matter with the ADMX Haloscope Chelsea Bartram

Dark Matter, a mystery

85% of the matter content of the universe is unknown

- How do we know? Indirect observations
- Dark matter concentrated near galaxies
- Interacts via gravity, unclear if other interactions
- Cold (non-relativistic)
- Feebly (non) interacting
- Very stable
- Non-baryonic

Dark Energy

Indirect Evidence for Dark Matter

What is the evidence?

- Rotation curves of spiral galaxies
- Gravitational Lensing
- Galaxy Cluster Collisions
- Primordial Nucleosynthesis
- Matter-Radiation Fluctuations
- Cosmic Microwave Background
- Baryon Acoustic Oscillations

Cosmic Microwave Background Planck CMB 2013

Bullet Cluster Composite: NASA, Markevitch etal., Clowe et al

Galactic Rotation Curves

Vera Rubin

Fritz Zwicky

Naively, velocity should asymptote to constant value.

Zwicky, Fritz. "On the Masses of Nebulae and of Clusters of Nebulae." The Astrophysical Journal 86 (1937): 217.

Faber, Sandra M., and J. S. Gallagher. "Masses and mass-to-light ratios of galaxies." Annual review of astronomy and astrophysics 17.1 (1979): 135-187.

Rubin, Vera C. "Rotation curves of high-luminosity spiral galaxies and the rotation curve of our galaxy." Symposium-International Astronomical Union. Vol. 84. Cambridge University Press, 1979.

K. G. Begeman, A. H. Broeils, R. H. Sanders, Extended rotation curves of spiral galaxies: dark haloes and modified dynamics, Monthly Notices of the Royal Astronomical Society, Volume 249, Issue 3, April 1991, Pages 523–537, https:// doi.org/10.1093/mnras/249.3.523

What could this dark matter be?

Axions are one solution that happens to solve multiple problems

What particle is dark matter?

What solves the Strong CP problem?

Axions

What could this dark matter be?

Axions are one solution that happens to solve multiple problems

What particle is dark matter?

What solves the Strong CP problem?

Axions

Why I love my job

Axions and Strong CP Problem

Strong Interactions -should- violate CP due to term in QCD Lagrangian

$$L_{\theta} = \frac{g^2}{32\pi^2} \theta_{QCD} F_a^{\mu\nu} \tilde{F}_{\mu\nu a}$$

CP-violation in strong interactions — Neutron EDM

- New limit on neutron EDM published this year!
- After many years searching: Still no neutron EDM!

$$d_n = (0.0 \pm 1.1_{stat} \pm 0.2_{sys}) \times 10^{-26} e \cdot cr$$

C. Abel et al. Phys. Rev. Lett. 124, 081803 — Published 28 February 2020

m

https://www.physics.uoguelph.ca/ radon-electric-dipole-moment

Axions and the Strong CP Problem

- Peccei-Quinn Solution to Strong CP Problem: Propose new global U(1) chiral symmetry that was spontaneously broken in the early universe
- Made Θ_{QCD} a dynamical variable which relaxes to zero at critical temperature, when the winebottle potential tips
- PQ Mechanism predicts a pseudo scalar boson which is the axion! (Weinberg, Wilçek)

Helen Quinn

Roberto Peccei 1942-2020

Where do axions fit in?

Wave-like dark matter

• What does this mean?

$$a(\vec{x},t) = \frac{\sqrt{(2\rho_{DM})}}{m_a} \cos\left(m_a t + \mathcal{O}(\nu_a t)\right)$$

р_{DM}: dark matter density m_a: axion mass

Calculate de Broglie wavelength of axions:

$$\lambda pprox rac{2\pi}{mv}$$
 $pprox$ 10 m - 100 km

Wavelength of the Conversion Photon: ~meter

Theoretical Constraints

Lower bound set by size of dark matter halo size of dwarf galaxies

Pre-inflation PQ phase transition

PDG <u>https://arxiv.org/pdf/1710.05413.pdf</u>

Adaptation of L. Winslow DPF Slide

Upper bound set by **SN1987A** and white dwarf cooling time

Post-inflation PQ phase transition

Axion Benchmarks

- 1-100 µeV mass range to constitute entirety of dark matter
- Two classes of models:
 - KSVZ (Kim-Shifman-Vainshtein-Zakharov):
 - couples to leptons
 - Range of g_v values, typically g_v =-0.97 used
 - DFSZ (Dine-Fischler-Srednicki-Zhitnitsky):
 - couples to quarks and leptons
 - Range of g_v values, typically $g_v=0.36$ used

Axion Lineshape (Velocity Distribution)

Maxwell-Boltzmann Distribution with annual and diurnal signal modulation

Detecting the axion

Adapted from L. Winslow DPF slide and Y. Kahn, See Graham and Rajendran, Phys.Rev. D88 (2013) 035023

How to detect an axion

Axion Haloscope

- Extremely sensitive AM receiver in a magnetic field.
- Microwave resonator approach.
- Uses a dilution refrigerator and ultra-low noise amplifiers to reduce background.

Pierre Sikivie

Quantum Computing

Microwave Electronics

15

_ _ _ |

High Magnetic Fields

ADMX Collaboration

- Founded in 1994 at LLNL
- One of 3 "Gen-2" Dark Matter Projects
- Now located at University of Washington

Fermilab

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

ADMX Haloscope

Tuning our cavity

As we tune, we track the TM010 mode Axion couples most strongly to this mode Note occasional mode-crossings

Frequency in MHz

Zooming in on a single mode

ADMX

- Dil Fridge: Reaches
 ~100 mK
- Superconducting magnet:
 ~can reach up to 8 T
- Quantum electronics: Josephson Parametric Amplifier (JPA)
- Field cancellation coil
- Microwave cavity and electronics

Dilution Refrigerator Mounted to Cavity

Experiment!

Quantum Electronics Package

ADMX Rigging Operation

Top of the ADMX "insert" after being moved into the magnet bore

RF cables

DC cables for sensors

Josephson Parametric Amplifier (JPA)

- Critical to obtaining low amplifier noise
- How does a parametric amplifier work?
- Classic example is child on a swing
- Anharmonicty leads to energy transfer from the pump tone to the signal tone
- Requires some non-linear element, in this case, the Josephson Junction

Figures courtesy of Shahid Jawas

Run Cadence

Data-taking operations:

- 1st pass through determine if we rescan
- Interrupted by noise temperature measurements
- 2nd pass through to achieve necessary sensitivity, or eliminate rescan regions

Scan Rate: Figure of Merit for Haloscopes

$$\frac{\mathrm{df}}{\mathrm{dt}} \approx 1.68 \frac{\mathrm{GHz}}{\mathrm{yr}} \left(\frac{g_{\gamma}}{0.36}\right)^4 \left(\frac{\mathrm{f}}{1 \mathrm{~GHz}}\right)^2 \left(\frac{\rho_o}{0.45 \mathrm{~GeV/cc}}\right)^2 \left(\frac{5}{\mathrm{SNR}}\right)^2 \left(\frac{\mathrm{B}_0}{8}\right)^4 \left(\frac{\mathrm{V}}{100 \mathrm{~l}}\right)^2 \left(\frac{\mathrm{Q}_{\mathrm{L}}}{10^5}\right) \left(\frac{\mathrm{C}_{010}}{0.5}\right)^2 \left(\frac{0.2}{\mathrm{T}_{\mathrm{sys}}}\right)^2 \left(\frac{\mathrm{S}_{\mathrm{SNR}}}{\mathrm{SNR}}\right)^2 \left(\frac{\mathrm{S}_{\mathrm{SNR}}}{\mathrm$$

Can't Control

Minimize

Dark Matter Density

- System noise:
- Amplifier Noise
- Physical Noise

Noise Characterization

- Receiver chain provides means for measuring key RF parameters, such as quality factor
- Two types of noise measurement
- 1) Heating of the 'hot-load' via dc current (by design)
- 2) Heating of the quantum amplifier package via an RF switch

Hardware Synthetic Axion Injections

Two types of analysis:

- Medium-resolution analysis (described here):
- •Can detect persistent axion signal.
- Assumes isothermal velocity distribution.
- •100 Hz bin width.
- •High-resolution analysis (not described here):
- Can search for much narrower peak due to discrete axion flow.
- Can detect annual and diurnal modulation of the axion, if detected.
- •0.01 mHz bins width.

Raw spectrum processing:

~50 kHz wide raw spectra, 100 Hz bins

Baseline Removal:

• The warm electronics shape is identified by averaging and filtering off-resonance scans.

Raw spectrum processing:

- Raw spectra are divided by the receiver shape and filtered
- Subtract 1 from each bin to obtain ~Gaussian white noise

Raw spectrum processing:

Scale by the Lorentzian (cavity line shape)

Grand spectrum processing

- Scale spectra by the average noise power per bin to achieve signal peaks independent of noise temperature.
- Filter spectra using the expected axion line shape
- Combine spectra using an optimal weighting procedure.

Software Synthetic Injections

le8	

94	1e8	

- Used to determine our detection efficiency and verify our analysis
- Developed by undergraduate \bullet student Hima Korandla, with my supervision
 - Simulated analysis data
 - Software synthetic injections for Run 1C

Verifying the axion signal

- A true axion signal
- Only observed within the confines of the cavity and magnetic field
- Persistent
- Remains when the synthetic axion generator is turned off
- Lorentzian line shape that follows that of the cavity
- Suppressed in non-TM010 modes
- Scales as B^2 (where B is the magnetic field)
- Small daily and annual frequency modulation

Extended Search for the Invisible Axion with the Axion Dark Matter Experiment

T. Braine et al. (ADMX Collaboration)

Phys. Rev. Lett. 124, 101303 — Published 11 March 2020

Sidecar Cavity R&D

- Smaller prototype cavity that sits within ADMX insert
- Testbed for new quantum electronics and piezo tuning mechanisms
- Using a traveling wave parametric amplifier (TWPA) in current incarnation
 - Benefits of TWPA: Broadband gain. Reduces need to tune with cavity. No current bias. Pump bias only.

Sidecar sitting on top of the main cavity for Run 1C

Higher Frequencies

- Scaling gets challenging
- One idea: Power combine multiple cavities and tune synchronously
- Challenges:
 - Cavity frequencies must be locked together
 - Increase in complexity

ADMX Run 2A

- 4 cavity array with common rotor. Frequency fine-tuned with sapphire mounted to linear stages
- N cavities combined in phase = sqrt(N) SNR improvement
- Scan rate (SNR)²
- 1.4-1.8 GHz frequency range (Run 2A)
- Volume ~76 liters
- Q~130,000

Prototype Study

Cavity (x4)

UF UNIVERSITY of FLORIDA

Images courtesy of Jihee Yang

Prototype Study

UF UNIVERSITY of FLORIDA

Images courtesy of Jihee Yang

- UF Prototype Study
 - Two versions of the 4 cavity design
 - Tested assembly fit/motion
 - Piezo actuator performance
 - Acquire mode map
 - Frequency tuning/locking
 - Antenna tuning
 - Quality Factor

UF UNIVERSITY of FIORIDA

Images courtesy of Jihee Yang

Two Versions Developed

Prototype V1		Prototype V2
Wheel Plate	No flexures	Flexures
Vertical Gap btw Course Rod and End Cap	0.02" each	0.005" each
Material	Al6061	Al6061+99.99% Al plated
Cavity Length	6.925"	7.126"

Courtesy of Jihee Yang

- Frequency lock the cavities
- Room measurements at UF
- Locking protocol at PNNL
- Software implementation at PNNL
- Cryo-testing will be at FNAL

UF UNIVERSITY of FIORIDA

Images courtesy of Jihee Yang

- 4-Cavity Main Cavity Assembly at LLNL
- Copper Cavity Plating at LLNL

Staff scientist Nathan Woollett

Graduate student Tom Braine working on the cavities at Livermore

- Quantum electronics testing at WUSTL
- Circulator Testing, JPA Testing
- Custom Power Combiners
- Updated Quantum Electronics Package
- FNAL Cryo Teststand

This work was supported by the U.S. Department of Energy through Grants No DE-SC0009800, No. DE-SC0009723, No. DE-SC0010296, No. DE-SC0010280, No. DE-SC0011665, No. DEFG02-97ER41029, No. DE-FG02-96ER40956, No. DEAC52-07NA27344, No. DE-C03-76SF00098 and No. DE-SC0017987. Fermilab is a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. Additional support was provided by the Heising-Simons Foundation and by the Lawrence Livermore National Laboratory and Pacific Northwest National Laboratory LDRD offices.

ADMX Collaboration Fermilab Collaboration Meeting in 2018

Conclusions

Axions are exciting!

- ADMX Run 1B achieved DFSZ sensitivity for 100% axion dark matter density in the range from 680-800 MHz, corresponding to a mass range from 2.81-3.31 µeV
- Run 1C currently underway
- ADMX is on track to continue its search for axions. Discovery could happen at any moment!
- Progress being made towards higher frequency searches

